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Statistical studies of hydrodynamic interactions between many particles in a dilute 
dispersion raise a problem of divergent integrals. This problem arises in particular 
when calculating the average velocity of sedimentation of solid spheres in a viscous 
fluid. The solution to this problem was given by Batchelor (1972) for monodisperse 
suspensions of spheres, on the basis of an assumption of homogeneity. This assumption 
is removed here. The problem of divergent integrals is reconsidered. The solution 
treats as successive steps : 

(a )  the average flow due to random statistically independent point forces ; 
( b )  the average flow due to random statistically independent solid spheres, without 

hydrodynamic interactions ; 
(c) the average sedimentation velocity of random, pairwise-dependent solid spheres 

with hydrodynamic interactions, in a dilute suspension. 
Considering the case of identical spheres, and assuming homogeneity in any 

horizontal plane, an expression is obtained for the average sedimentation velocity 
of a sphere in an otherwise inhomogeneous dispersion. The formula is written in terms 
of integrals involving probability distributions. It reduces, when the suspension is 
homogeneous, to a formula obtained by Batchelor. 

The probability distributions are not calculated in this paper. I n  order to evaluate 
numerically the average velocity of sedimentation, a simple expression for the pair 
distribution function is assumed, and two different concentration profiles are 
considered, viz. a sinusoidal variation and a step function. I n  the case of sinusoidal 
concentration wave, it is found that the contribution of the inhomogeneity is, for 
small wavelengths, comparable in magnitude to  that calculated for a homogeneous 
dispersion by Batchelor (1972), i.e. - 6 . 5 5 ~ .  

The difference in velocity between the crest and trough of the wave is an increasing 
function of the wavelength. For a step function in concentration, particles at the top 
of the cloud start to fall faster, this effect being limited to a top layer about 10 radii 
thick. 

For future study of the long-term behaviour of a sedimenting cloud, the evolution 
of the pair distribution function should be added to the present theory. 

1. Introduction 
The sedimentation of solid spherical particles in a viscous fluid has been studied 

in several recent papers. Herczynski & Pienkowska (1980) give a survey of different 
statistical approaches used to treat the hydrodynamics of a suspension of particles. 

A basic method used in calculating hydrodynamic interactions between a large 
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number of falling spheres was deduced by Batchelor (1972). It is based on the 
following assumptions : 

the Reynolds number for the flow around the spheres is low ; 
the volume concentration of the spheres in the suspension is low; 
the suspension is monodisperse ; 
it  is homogeneous - the volume concentration of spheres is uniform. 
The more general case of a polydisperse suspension was considered by Batchelor 

(1976) in a paper introducing the effects of Brownian motion. The detailed study of 
a polydisperse suspension was made recently by Bat’chelor (1982) and Batchelor & 
Wen (1982). Between these two studies, the case of spheres of equal radius, but 
different densities, without Brownian motion was treated by Feuillebois (1980), and 
the slightly different case of falling drops of different radii, but of the same density, 
was considered by Haber & Hetsroni (1981). 

The assumption of a homogeneous suspension was essential in these papers, since 
it was the basis of some physical conditions introduced by Batchelor (1972) to 
calculate averages which would otherwise appear as divergent integrals. Other 
problems involving divergent integrals were studied along the same lines on the basis 
of the homogeneous-suspension assumption. Batchelor & Green (1972) calculated the 
viscosity of a suspension, Jeffrey (1973) derived the thermal conduction of a 
suspension, to quote only a few examples. The underlying method was presented by 
Jeffrey (1974) as a group expansion in terms of integrals involving successively larger 
numbers of particles. Later, using an averaged-equations approach, Hinch (1977) 
presented the method as a ‘first renormalization’ (as opposed to a ‘second renorm- 
alization ’ generally applied to problems involving porous media). In  each case, 
homogeneity is assumed. 

In  the present paper this assumption of a homogeneous suspension is removed. The 
problem of divergent integrals is reconsidered for inhomogeneous suspensions. For 
the case of batch sedimentation, an expression is obtained for the average velocity 
of a sphere, in terms of integrals involving probability distributions. This formula 
reduces to the one obtained by Batchelor (1972) when the suspension is homogeneous. 

The ideas used here include the probability techniques of Batchelor and his 
coworkers and also some considerations about point singularities in Stokes flow 
(Saffman 1973; Chwang & Wu 1975; Felderhof 1976). A reason for introducing point 
singularities will be given now, together with the presentation of the calculation 
method and some definitions. 

Consider a volume V containing a large number N of identical solid spheres. The 
volume V is large enough for the volume concentration c of the suspension to be low. 

Using the notation of Batchelor (1972) for the statistics of suspensions, the 
probability density for one sphere to be centred at x (extremity of vector x) is written 
as P ( x ) ,  and the probability density for N spheres to be centred a t  x,, ..., xN 
respectively is written as P(x l ,  . . ., x N )  or simply P(WN). The symbol g N  stands for 
a configuration of the N spheres. The normalization conditions are 

Jv P ( x )  dx = N ,  ( 1 . 1 )  

where dx is the volume element in V and dWN = dx, . . . dx, is the volume element 
in V N .  Given N +  1 spheres, among which there is a ‘test sphere’ centred a t  x,, the 
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conditional probability density to find the other spheres centred at x,, . . . , X, 

respectively is defined as 

Our goal is the calculation of the average sedimentation velocity of the test particle 

(1 .4)  

at x,: 

~ p ( x o )  = mjVN Up(xo, wiv) ~(viv~xo)dqN, 

where u,(x,,V,) is the velocity of the test particle centred at x,, interacting with 
the other N spheres in the V, configuration. 

This familiar definition will be used for the present argument but a more general 
definition involving Schwartz’s distributions (Schwartz 1966) will be used later in 
calculations. 

The volume V is much larger than the volume of a sphere. Then, on the basis of 
the low concentration assumption, only pairs of spheres will be in the same vicinity. 
In view of the fact that all spheres are identical, (1 .4)  becomes to O(c2) 

P(VNIxO) = P(VN+l)/P(XO). (1.3) 

1 

where up(x,, x,) is the velocity of the sphere centred at  x, interacting with the sphere 
centred at  x,. If V becomes infinitely large, it is known that vp(x,, x,) containing terms 
of order l / r ,  l /r3,  with r = ~x l -xo~ ,  decays slowly for r - f  00. The conditional 
probability P(x,lx,) tends to P(xl )  when the spheres centred at  X, and x, are far apart, 
and this last quantity is generally non-vanishing (for a homogeneous suspension it 
is a constant). Thus the integrand in (1.5) decays too slowly for the integral to be 
convergent. This familiar problem of ‘divergent integral’ (Batchelor 1972) will be 
reconsidered here. 

First note that a similar problem arises in the calculation of the average fluid 
velocity at  x, due to spheres centred at x,, . . . , x N ,  in particular for spheres that are 
statistically independent and non-interacting hydrodynamically, as we shall now see. 
This average fluid velocity is by definition 

tJ(xo) = - u ( x O ,  %N) P(‘N) dVN, (1 .6)  N !  ‘s V ,  xo E fluid 

where xo E fluid means that x, is in the fluid; v(x,, VN) is the fluid velocity a t  xo due 
to all spheres in the V, configuration. As there is neither statistical dependence nor 
interaction between the spheres, this average velocity can be written in terms of the 
direct effect of each of the N spheres behaving as if it were alone in the fluid. In view 
of the fact that all the spheres are identical, (1 .6)  becomes 

~(xo, xi) P(xi) dx1. (1 .7)  s V, xosfluid 
qx,) = c u(xO, xk) P (xk)  dxk = - 

k-1  V, .roefluid 

The fluid velocity v(x,, x,) at x, due to a sphere centred at  x, is known to contain 
terms decreasing like 1/r and l / r3  for r = Ixl-xol+ CO, and P ( x l )  is non-vanishing, 
so that the integral (1 .7)  is divergent when V becomes infinitely large. 

A ‘divergent integral’ also appears if we replace the independent solid spheres by 
independent point forces. For i t  is known that the fluid velocity at a point x located 
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a t  a large distance from a sphere centred a t  x, is identical, if terms of order l / r  are 
considered, with the fluid velocity due to a point-force singularity, or ‘ Stokeslet ’ 1 

a r’(a-r’)  

where us is the fluid velocity, ps the pressure, the subscript S stands for Stokeslet, 
p is the fluid viscosity, r’ = x-x,, r’ = (r’(, 

and a is the ‘intensity’ of the Stokeslet: 

(1.10) 

F is the force acting on the fluid a t  x, (let the drag force acting on the sphere be -4. 
The average fluid velocity is given by (1.7),  where u is replaced by us: 

@(X) = uS(x, x,) P ( x l )  dx,. I, (1 .11)  

It is divergent when the volume V becomes infinitely large. 
Thus ‘divergent integrals ’ occur even when hydrodynamic interactions are absent. 

The present method for avoiding the ‘divergent integrals’ is based on two ideas. 
(a )  The treatment of divergent integrals is uncoupled from the calculation of 

hydrodynamic interactions. That this can be done will be proved in $5 .  
( b )  The divergent integrals are avoided by keeping V finite. The justification for 

this is that, when hydrodynamic interactions are absent and spheres are statistically 
independent, the radius a of a sphere is not a relevant lengthscale (note that spheres 
may overlap). Thus when V/a3 becomes very large, instead of keeping a finite, let 
us rather take a reference length based on V ,  and keep it finite. We then see the 
particles become very small in the limit a3/ V+0. In  the first approximation, particles 
will behave like point forces ($$2, 3). In  the next approximation, their small volume 
will be taken into account exactly ($4). 

Our first problem is to calculate the average fluid velocity due to random point 
forces. We might initially think of using formula (1 .11) .  However, this is not the 
formula to use, since we have to apply some boundary condition on the boundary 
(say i3V) of V ,  and formula ( 1 . 1 1 )  does not necessarily allow that. The boundary 
condition that we will apply here is 

a = O  onaV, (1.12) 

i.e. the no-slip condition on the walls of the container. Note that the lengthscale based 
on V is relevant since we have to apply the boundary condition on this scale. The 
process used to calculate the average velocity due to point forces in V will be first 
(in $2) to take a broad definition of the average, and derive equations for the average 
velocity. The mathematical treatment of point singularities in Stokes flow can be 
made rigorous in terms of the theory of distributions? (Schwartz 1966) and of the 
average defined by Gel’fand & Vilenkin (1964). The details will be published elsewhere 

t No confusion should arise between probability distributions and Schwartz’s distributions (or 
generalized functions). 
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(Feuillebois 1984) and results of this theory will be given here. We will then find a 
solution of these equations satisfying the required boundary condition (1.12). The 
integral (1 .11)  will actually be a particular solution of these equations, but not the 
one satisfying the boundary condition (1.12). 

In $3  another problem involving point forces will be resolved, namely the 
sedimentation of a spherical cloud of point particles in an infinite fluid at rest. This 
particular configuration together with the one Considered in $2 will be used in 
calculating the influence of the volume of the spheres ($4). The solid spheres 
considered are statistically independent, and are considered to fall in a viscous fluid 
without interactions between them. 

In  $5 the hydrodynamic interactions will be introduced together with the 
statistical dependence between pairs of spheres in a dilute suspension. An expression 
for the average velocity of sedimentation of a solid ‘test ’ sphere will be obtained in 
terms of integrals involving probability distributions. 

To simplify the analysis and the notation, the suspension is considered to be 
monodisperse, but the method can be extended without difficulty to a polydisperse 
suspension. 

Finally in $6 we will assume some probability distributions so as to calculate 
numerically the integrals representing the inhomogeneous contributions to  the 
average sedimentation velocity. 

2. Average fluid velocity due to random independent point forces 
The details of the arguments leading to the results presented in this section will 

be omitted. They were obtained on the basis of Schwartz’s (1966) theory of 
distributions. The more accessible book by Schwartz (1979) was actually sufficient 
for our purpose. The work of Friedlander (1982) was also used. For more thorough 
description see Feuillebois (1984). 

The equations that the average fluid velocity should satisfy are considered in three 
steps : 

( a )  the fluid velocity and pressure of a viscous fluid containing point-force 
singularities should satisfy the equations 

N 

V’V = 0. 

These are the Stokes equations with added point-force singularities. On the 
right-hand side of the momentum equation appear ‘Dirac distributions’ or ‘6- 
functions’ a t  the different points xK where the forces F(xK) are concentrated. Such 
equations can be found in the literature (e.g. Saffman 1973; Chwang & Wu 1975). 
Note that the stress tensor is discontinuous and therefore not derivable a t  the 
different points x K ,  in the sense of functions. But (2.1) can be shown to be true with 
derivatives defined in the sense of Schwartz’s distributions. 

( b )  Now consider the points x K  to be random, so that v a n d p  are also random. 
Our goal is to obtain equations for the averaged velocity and pressure. These 
equations will be obtained by averaging (2.1). But first the definition of the average 
should be refined as we are now dealing with distributions, and the average should 
commute with the derivatives in the sense of distributions. Also the average of the 
Dirac distribution has to be calculated. 
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A definition of the average of a distribution is given by Gel'fand & Vilenkin (1964). 
We adapt this definition to our problem. Consider a random distribution TwN, 1.e. ' a 
distribution that depends upon the random configuration W N  of the points x,, ..., x N .  
Applying this distribution to a test function $, we obtain the number 

(TVN(X)' (2.2) 

This number depends on W N  : it  is a random variable, u say. This random variable 
can be averaged in the usual way, using a formula of the type 

4 r  

depending upon the absence or presence of a test sphere centred a t  xo. The result 
obtained by this process provides a definition of the averaged distribution T: 

(T,$) = u = ( T , $ ) .  (2.5) 

As compared with Gel'fand & Vilenkin's definition, it is assumed here that the 
probability distribution function may be written in term of a probability density P .  
We should emphasize here the physical requirement for such a function to exist : we 
exclude any event such that a particle sticks somewhere with a non-zero probability. 
We exclude thus any physical force allowing such an event to happen. 

It can be checked that Tdefined by (2.5) is indeed a Schwartz distribution, and 
also that the average defined here commutes with the derivatives in the sense of 
distributions. For practical calculations, it is important to note that, when T is an 
integrable function, the average T defined by (2.5) is the same as the usual average 
of a function in terms of an integral (a formula of type (2.3) or (2.4)). 

The average of the Dirac distribution is calculated using the definition (2.5) of the 
average and the classical definition of a Dirac distribution. In this section, we consider 
independent point forces and the definition (2.5) is to be completed with (2.3), where 

The result is 

where 

1 
N 

s = - 9 ( x I ) ,  

P (xI )  for xI in V ,  
0 otherwise. 

P ( X j )  = 

The averaged point-singularity ' Dirac distribution ' looks like a continuous field. 
Formula (2.7) was given by Saffman (1973) for the case of a homogeneous suspension 
(his formula (4.1), where a missing Za should be added). 

( c )  Using the definition (2.5), (2.3) of the average, and its mathematical properties, 
we can average the Stokes equations with random independent point-force singu- 

( 2 . 9 ~ )  
larities (2.1) : 

v - v =  0. (2.9b) 

For identical particles in sedimentation, all the F(xK)  are identical with a constant 
F, and the bulk force on the right-hand side of ( 2 . 9 ~ )  resembles a gravity force in 
a fluid with variable density. 

-VF+,UV'V = -F~(x). 
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The average fluid velocity due to random independent point forces in a container 
of volume V is now calculated as the solution of (2.9) with the no-slip condition (1.12) 
on the boundary of V .  The probability density is assumed as being a given function 
of position. 

We remark that the averaged equations then have the trivial solution 

C = 0, Vp = F ~ ( x )  (2.10) 
if F P ( x )  is curl-free. 

This is a hydrostatic field if the function 9 is such that the pressure gradient 
proportional to 9 ( x )  does not induce any fluid motion. This can be true for batch 
sedimentation in a vertical tank with 9 ( x )  varying only along the vertical coordinate, 
which is the case considered in this paper. Take the coordinate z pointing downwards. 
The stratified fluid of density 9 ( z )  is a t  rest if 9 is an increasing function of z. 

The solution (2.10) may also be valid temporarily, with 9 being any function of 
z. We consider then a concentration profile which may eventually start to distort. 

I n  the more general case of a fully inhomogeneous suspension, overturning 
may occur, as is the case in the problem of sedimentation in an inclined tube studied 
by Acrivos & Herbolzheimer (1979). Then the averaged equations (2.9) may not be 
sufficient to  describe the general case: if the viscous term on the left-hand side of 
( 2 . 9 ~ )  is large enough to balance the force term on the right-hand side, then the require- 
ment that the Reynolds number on the lengthscale Z of the volume V be small, 

implies 

where 

!9< 1, 
V 

F = 6napvp,. 

(2.11) 

(2.12) 

(2.13) 

ups is the limit sedimentation velocity of a single particle and 9 = O ( N /  V ) ,  V = O(Z3). 
The condition (2.12), for the Reynolds number relative to  a particle, is very strong, 

since the number N of particles in V is very large. It will therefore seldom be met 
in practice. Thus, in the general case, for viscous terms to be important on the 
lengthscale 1, the Reynolds number should be larger than unity on that scale, so that 
the inertia terms should be included in (2.9). 

To conclude this section, as the homogeneities considered here are vertical, the 
average fluid velocity due to point force is identically zero, and so are its derivatives. 

3. Sedimentation of a spherical cloud of point particles 
Consider now the sedimentation of point particles located in a sphere of radius a 

and centre xo. Outside the sphere the fluid is clear, and the velocity of the fluid a t  
infinity (at distances much larger than a )  is zero. The fluid velocity and pressure 
should be continuous across the sphere surface. This problem of sedimentation of a 
finite cloud of point particles can be solved in two different ways, which we will now 
present. 

The first way is purely mathematical. We use here results from $2. We want to 
solve the averaged equations (2.9) with 
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A solution is obtained by adding N Stokeslet fields like (1.8) and averaging using (2.3) 

where r’ = x - x l , r ’  = Ir’l,r, = x l - x o  and rl = IrJ. 
This integral becomes vanishingly small when x is outside the sphere of centre xo 

and radius u and a large distance from it. It is continuous as x crosses the sphere 
surface. The pressure p is calculated similarly. 

More precisely, we will be interested ($4) in the average velocity and its Laplacian 
a t  the centre xo of the sphere. For the homogeneous case 

P ( x )  = n, (3 .4)  

where n is the number of point particles per unit volume. The integration of (3 .3)  
is then straightforward in spherical polar coordinates, and we obtain at x, 

a@,) = @ P a n .  (3 .5)  

Now for the inhomogeneous case the average velocity at x, can be rewritten as 

Next, to calculate the Laplacian of the velocity, we use the fact that  the average 
and the derivatives commute to write 

- 
V2v = m 2 t s  = m 2 v s .  (3 .7)  

Details of the following calculation can be found in Feuillebois (1984). The Laplacian 
of the Stokeslet velocity (1.8) in the sense of distributions yields? 

(2a  6 r ’ y ;  r ’ ) )  
V20s = - 4fnaSxl + pv - - 

r f3  , 

where the symbol pv denotes a principal-value distribution. The definition of such 
a distribution pv (f ), where f is a function integrable except a t  the origin, is given 
in terms of its scalar product with a test function q5: 

The average of (3.8) is calculated using the definition (2 .5)  of the average of a 
distribution and the averaged Dirac distribution (2 .7) ,  plus some standard theorems : 

~ J ( 2 ,  6 r ’ ( a * r ’ ) )  
Nv2vs = -YnaP(x)+pv -- P(x1) dx1 r f 3  r f5  

(3.10) 

Evaluating this quantity a t  x = xo, we use the fact that, for constant P (the 
homogeneous case), the principal-value distribution in (3.10) is then vanishing by 
symmetry. The result for the Laplacian of tj follows from (3 .7)  : 

If P is continuous at xo the principal-value symbol is no longer necessary since the 

t I would like to thank Dr F. G. Friedlander for providing hints leading to this result, 
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integrand varies now as l/r: around x1 = x, so that the integral is absolutely 
convergent . 

In $4 we shall also need the quantity V4U(x0). This can be directly obtained from 
the averaged equations (2.9). With the definition (1.10) of a, we calculate 

V2p = 87cpa*VB, (3.12) 

V4ii = - 8 x a V 2 9  + 8na. V V B .  (3.13) 

This last quantity is zero, from the assumption that B varies along the vertical only. 
In this problem of a spherical cloud of point particles, the velocity and its Laplacian 

and Laplacian square a t  the centre of the cloud have been obtained by direct 
calculations, using the theory of distributions. But these results may be obtained in 
another way for the particular case of a homogeneous dispersion. From (2.9) with 
conditions (3.1) and (3.2) we recognize the Hadamard problem of a drop of fluid 
falling in another fluid of different density.t The solution is classical (e.g. see 
Batchelor 1967, p. 235). It is important to note that the drop is found to be stable 
without any surface tension to maintain the spherical shape. 

Let p be the density of the fluid inside the drop, and p the density of the fluid 
outside. The viscosities of both fluids are equal to p. Let g be the acceleration due 
to gravity. In order to get an absolute pressure, we add to the flow field given by 
Batchelor (1967) a hydrostatic field inside the drop 

The resulting flow field inside the drop is 

a = U + -  " u ( 1 - -  ;2) +- """I , 
4 

P = H p - p ) g ' r ,  

where U is the sedimentation velocity of the drop: 

4 a2 u= - - ( p - p ) g  
15 1c 

(3.14) 

(3.15) 

(3.16) 

(3.17) 

ii, p satisfy (2.9) if the excess weight per unit volume of the interior fluid is identified 
with the force field due to the point particles: 

( p - p ) g  = FP(x)  = Fn. (3.18) 

From the preceding equations, and from (1.10), the velocity a t  the centre of the 
drop is found to be identical with the result (3.5). The Laplacian of the velocity at 
the centre of the drop can be calculated from the flow equations (2.9), using the 
expression (3.16) for the pressure. The result is identical with the part of (3.11) that 
corresponds to a homogeneous suspension. 

4. Random independent spheres without hydrodynamic interactions 
Until now we have only considered point forces, and have not taken the volumes 

of the particles into account. This volume effect will be considered here. The statistical 
dependence between the spheres and the hydrodynamic interactions will be considered 

t I am grateful to Dr J. Rallison for this suggestion 
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in $5. In other words, the spheres that are considered here can overlap, and they give 
the same flow field as if they were falling in isolation in the fluid. 

The fluid velocity and pressure at a point x due to a sphere of radius a and centred 
at  x,, falling with velocity ups, are 

where again r‘ = x-x , .  

sphere induces the same flow field at a point x as a Stokeslet of intensity 
The force exerted on the fluid by the sphere is 67capuPs, and from (1.8)-( 1.10) the 

a = $xups. (4.3) 

provided that r’ 9 a. 

the flow field due to a Stokeslet : 
The flow field at  any point x outside the sphere can be also written in terms of 

0 = us + $2V2VS, 

p = p s  -k h2V2PS, 

(4.4) 

(4.5) 

where us, ps are given by (1.8). Thus, as was noticed by Hinch (1977), at any distance 
r‘ > a the volume effect of the sphere can be simply taken into account by replacing 
the sphere by a Stokeslet plus a degenerate Stokeslet quadrupole a t  its centre. 

For convenience we extend the expressions (4.4) and (4.5) for the fluid velocity and 
pressure to any point in space (any r’ ) ,  the derivatives being then calculated in the 
sense of distributions. 

Consider now N independent spheres. Each sphere induces the same flow field as 
if it were alone in the fluid, and can then be replaced without loss of generality by 
a Stokeslet plus a Stokeslet quadrupole located a t  its centre. The flow field v,p,  which 
we extend also inside the spheres, is then a solution of (after (2.1)) 

N 

-Vp+pV2v = -F (SxK+~’V2SxK) ,  
k - 1  

V’V = 0. 

We can now reconsider the problem already mentioned in 5 1, i.e. to calculate the 
average fluid velocity at a point x,, whenever this point is in the fluid. 

We are now in a better position to solve this problem. We first remark that xo in 
the fluid means J x , - x ~ I  > a for any sphere centre xK,  and that the spheres can be 
replaced without loss of generality by a Stokeslet plus a Stokeslet quadrupole at  their 
centre. Then the idea is to calculate the average on configurations for which 
Ixo-xKJ > a as the difference of two averages: 

q x , )  = t I (x , )  - dI (x , ) ,  (4.7) 

where ijl(x,) is the average on configurations for which x, is located anywhere with 
respect to the xK,  and iirl(x,) is the average on configurations for which there is a 
K such that Jx,, - xKJ < a. We thus add, and then subtract, physical situations where 
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x, is in a particle, and these situations are described, somewhat artificially, by 
considering xo to be almost always in the flnid, i.e. either at the point singularities 
located at the centres of the spherical particles or in the fluid. 

As we are dealing with distributions, we use instead of (1.6) the average in the sense 
of (2.3) and (2.5). u1(x0) is defined with the probability density P(%?,), and P ( x , )  is 
defined with the probability density 

P(%?,) (IX,--XKI < a ;  K = 1,2, ...) N ) ,  
0 otherwise. en(%,) = { 

Similar formulae can be written replacing the velocity by the pressure. 

(4.6) : 
Each flow field u”,@ (i = I, 11) is a solution of the equations obtained by averaging 

(4.9) 
-V$+pV2d = -F(Pi++2V2Pi  

v*yi = 0, 

where 

for x in V ,  I P(%?,) ( i = I )  

fin(%?,) (i = 11) (4.10) 

\0 otherwise. 

The boundary conditions are, for problem I (for which the relevant lengthscale is 
based on the volume V ) ,  

u l = O  onaV7; (4.11) 

and for problem I1 (for which the relevant lengthscale is the radius a of the sphere 
that contains the point singularities) 

@-to as Ix-xKI+co. (4.12) 

Problems I and I1 have been solved in $32 and 3 respectively, for the particular 
case of averaged point-force (Stokeslet) singularities. Here, we use the notation for 
these solutions yiF,Pi ( i  = I, 11). The systems of equations already solved are 

(4.13) 

As V& was found to be identically zero, the solution of problem I, (4.9)-(4.11), is 
obtained merely by applying the operator 1 +&x2Vz to V:: 

V I  = 0. (4.14) 

The solution of problem 11, (4.9), (4.10) and (4.12), is obtained by applying the 
operator 1+&x2V2 to the solution from $3. The expression (4.7) for the average 
velocity then becomes 

qx,) = - ( a ~ ( x o ) + ~ ~ V 2 i $ ( x 0 ) ) .  (4.15) 

For the next section, the Laplacian V2iJ(xo) will also be required. As (4.15) is actually 
valid for any x,, and since V4U&I vanishes after (3.13), we obtain 

VZV(X,) = -vze&I(x,). (4.16) 

The average velocity OF and its Laplacian are given by (3.6) and (3.11) respectively. 

6 F L M  139 
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The results (4.15) and (4.16) may then be written, using (4.3), as 

+~v%(x,) = #7tu3~(xo)  u p s - ~ 2 p v  J {V2v(x ,  x,)}, = xo [ P ( x l )  - P(x,)] dx,. 
rl < a 

(4.18) 

In (4.17), u(x,, x , )  represents the velocity of the fluid at xo due to the sphere centred 
a t  x,.  It is given by (4.1) for x = x,. By symmetry x, -x ,  can be replaced by 

r, = x, -x ,  (4.19) 
in that formula. 

In (4.18) the Laplacian appears in the usual sense of functions. We use Schwartz's 
notation (the braces) for derivatives in the sense of functions as opposed to derivatives 
in the sense of distributions. 

This Laplacian becomes, from (4.1) and (4.19), 

(4.20) 

The first term in the result (4.17) may be obtained more directly for a homogeneous 
suspension. Considering the spheres as solid (i.e. not replaced by point singularities) 
we simply write that  the velocity u is ups for a point in a sphere. As ups and P are 
constants, the volume of the sphere appears in the averaging integration. The 

(4.21) equation 

was written by Batchelor (1972) as a condition that the fluid and particle mixture 
be a t  rest on average, or more precisely (Batchelor 1976) that it  is a t  rest in a frame 
in which the average flux is zero, for a homogeneous suspension. 

By the present approach, this condition is obtained as the solution of a system of 
equations, with the no-slip boundary condition on the boundary a V.  

For the case of a homogeneous suspension, the equation (4.18) with only the first 
term on the right-hand side was obtained by Batchelor (1972) by noticing that the 
deviatoric stress tensor is constant on average and its divergence is thus zero on 
average. A term &cups was obtained in equation (3.13) of that paper (where U, = ups). 
It is identical with the first term on the right-hand side of (4.18) using the volume 

(4.22) concentration 

The results (4.17) and (4.18) can be re-expressed for the case where the probability 

@+~7ta3Pups = 0 

c = *7Ca3P. 

density, which varies along the vertical coordinate z only, can be developed as 

zm dmP d P  
dz m !  dzm 

(4.23) P(x1) = P(x0) +z- (x,)  + . .. +-- (x , )  + ... ) 
where x, corresponds to z = 0. After some integral calculus we get 

a 2 k  

k - l  (2k+ 1 )  ! ( 2 k +  3) dzZk 
(4.24) 

m a2k 
&za"V%(xo) = $7cu3 (4.25) 

, , , (2k+l)!(2k+3) dzZk 

V4i7(xo) = 0. (4.26) 
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5. Random pairwise-dependent interacting spheres 
Consider N +  1 spheres centred at  x,, x,, . . ., xN in the volume V .  We are interested 

here in situations where one of the spheres is centred at  a fixed point 0, in order to 
average, for these situations, the velocity of this ‘test sphere’ over all possible 
locations of the other spheres. 

A difficulty arises here : it is unlikely that there is any configuration for which the 
centre of one sphere is exactly at point 0. A similar difficulty arises in statistical 
physics, where it is unlikely that a point in phase space, representative of the system 
of molecules, passes exactly through a point of the energy surface (Haar 1961). 
However, we can assume that there is a non-negligible number of configurations for 
which a centre X, of a sphere is located in a small neighbourhood of point 0. More 
precisely, we assume that the probability of the event Ix,J < E (where e is a positive 
small number) is non-zero. Such an hypothesis may be called ‘quasi-ergodic’. We 
define then the average velocity of the ‘test sphere centred at  point 0 ’ as 

UP(O) w Op(Xo). (5.1) 

The average tjp(x,) is defined by keeping the test sphere centred at x,, with the 
other spheres then taking all possible locations in V.  As we are dealing with 
distributions, the definition (2.4), (2.5) of the average is used: 

1 , .  

The definition (5.1), (5.2) differs in two ways from the more-straightforward 
definition (1.4) as given by Batchelor (1972). First for a homogeneous suspension, it 
was possible to take the centre x, of a sphere to be fixed, as the choice of the point 
x, is not relevant. But here, for an inhomogeneous suspension, the choice of the point 
0 is relevant. In particular, we take the boundary i3V into account, and this boundary 
would be random in a frame with x, fixed, which would make integrations unpleasant. 
These difficulties are the reasons for the present quasi-ergodic hypothesis. 

Secondly, we use a more general definition of the average in terms of distributions. 
This definition contains the ordinary definition (1.4) whenever up is a function. But, 
as we introduced distributions as a intermediate mathematical tool, this refinement 
had to be introduced here. 

This section differs from the preceding sections in that the hydrodynamic inter- 
actions between the spheres are introduced, together with the statistical dependence 
of the locations of the sphere centres. It will be useful to separate these different 
effects, rewriting (5.2) as 
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(5.4) 

From Faxen's formula, the quantity 

ups + u ( x o ,  VN)  +b2[v2v(x, w N ) l x  = xo 

equals the velocity of the sphere a t  x, in the flow field created by the N spheres of 
the V N  configuration. The quantity w ( x , , V N )  then represents the effect of hydro- 
dynamic interactions between the test sphere and the other spheres. The first integral 
in (5.3) represents the average effect of these interactions. The second integral in (5.3) 
contains the relative effect of the statistical dependence of the test sphere and the 
N other spheres, in the quantity 

For the hydrodynamic interactions, and for the statistical dependence between the 
sphere centres, the radius of a sphere is a relevant lengthscale. We then let the volume 
V become infinite, as an approximation to V 9 a3. Since we will not use distributions 
but only functions, we have already written the first two terms in (5.3) as integrals 
on functions, applied to the test function q5. These integrals are convergent for 
pairwise-dependent spheres when V becomes infinite, as we will see shortly. Now the 
third term in (5.3) concerns independent spheres without hydrodynamic interactions, 
which is the problem solved in 54. As we used distributions for this solution, we keep 
the corresponding term in (5.3) in the general form of the average of a distribution. 

To calculate the first and second integrals in (5.3), which extend now over the whole 
space R3N, we reduce them to integrals over the locations of a single sphere centre 
in W3, on the basis of the low-concentration assumption. This approach is the one 
of formula (2.10) of Batchelor (1972). Let us call J,, J2 the resulting integrals: 

J1 = J w(x0, x,) P(x1lxo) dx, + 0(c2 ) ,  (5.5) 

(5.6) 

R3 

[u(xo xi) +b2"V2u(x, xi)lx = .,I [P(xilx,)-P(x1)] dx1+ 0(c2 ) ,  
W3,x,efluid 

J 2  = 1 
with obvious notations for w and P in the case of one sphere centred at x1 together 
with the test sphere. Such an approximation is valid if the integrands decay fast 
enough for the integrals J1, J, to be convergent. The fact that  the integrands decay 
fast enough results from the way (5.3) was constructed. But let us go into more detail. 

In  integral J,, the integrand is O ( ~ / T - ~ ) ~  for large r1 because: 
(a) it results from the behaviour of the mobility coefficients for two spheres (cf. 

Batchelor 1976) in that  only the direct action of the sphere centred a t  x, upon the 
sphere centred a t  x, gives terms of larger order ( l /r l ,  l/r!) in uo(xo, xi); 

( b )  this direct action of the sphere centred at xl, i.e. the effect of the flow created 
by this sphere upon the velocity of the test sphere, can be expressed in term of Faxen's 
formula by 

( c )  w(xo,  x,) is defined by subtraction of these terms from up(x,, xl) and is thus 

( d )  the probability density P(x,lx,) appearing in (5.5) is bounded. 
In  integral J,, the velocity term decays like l / r l .  The behaviour of the probability 

term is obtained by using the normalization condition (1 .l) for the probability density 

O(1/rJ4; 
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P(x,), together with the normalization condition for the conditional probability 
density : 

Jv P(x1lxo) dx, = N .  

J, [P(x1lxo)-P(x,)l dx1 = 0. 

Subtracting (1  . l )  from this equation, we obtain 

(5.7) 

Equation (5.7) is valid for any V ,  in particular for infinite V .  The integral on R3 is 
thus convergent. We expect that it is also absolutely convergent as there is no obvious 
physical reason why P(x,lx,) - P ( x l )  should change sign for increasingly larger rl. 

Nevertheless, a non-absolutely convergent integral is sufficient to prove, using 
Abel’s lemma, that integral Jz (5.6) is absolutely convergent. 

This demonstration is valid only if the probabilities can be expressed in terms of 
probability densities, as was assumed for the definition of the average (2.3)-(2.5). It 
was then observed that particles should not adhere anywhere with a non-zero 
probability. As an example of the opposite, let us consider electrically charged 
Brownian particles, which strongly repel each other. As the expansion of the cloud 
of N particles is limited by the walls of the container, it is of course possible that 
a number of particles may cling to these walls with a non-zero probability, and the 
present approach is not applicable in such circumstances. In particular, 
P(x,~x,)-P(x,) may then decrease too slowly for the integral (5.7) to be convergent. 

The expression (5.3) of the average velocity of the test particle is now rewritten 
using (5 .5) ,  (5.6) and the results (4.17) and (4.18) for independent particles without 
interactions. We get, to order O ( c ) ,  

UP(XO) = u p s - ~ ~ a 3 P ( x o )  ups 

In the last integral we have specified that the spheres do not overlap, restricting 
the range of integration. The result (5.8) is analogous to formula (7.5) of Batchelor 
(1976). The new term appearing here, for homogeneous sedimentation, is the principal 
value of an integral over r1 < a.  Recall that the Laplacian in this integral is calculated 
in the sense of functions, and the principal-value symbol can be dropped whenever 
the probability is regular in x,. If we assume that the probability can be developed 
as in (4.23), then this integral can be rewritten, using (4.24) and (4.25), as 

dZkP 
(5.9) 

00 a2k 
= - 2 2 ~ ~ 3 V ~ ~  z 

k - l  (2k+ l)!(2k+3)dz2L(x0)’ 

This ‘new term ’ involves all even derivatives of the probability P ( x )  at the centre 
of the test sphere. 
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The effects of the inhomogeneity of the suspension on the average velocity of 
sedimentation come from the integral (5.9), but also indirectly through the va.riations 
of the probability densities which enter the integrals on rl > a and r1 > 2a in (5.8). 

Equation (5.8) can be simplified further, using the fact that  the spheres do not 
overlap, to write the second integral as 

c 

where 

The first integral on the right-hand side of (5.10) can be added to the first integral 
on the right-hand side of (5 .8) .  The second and third integrals on the right-hand side 
of (5.10) can be calculated from the results of $4. Equation (5.8) then becomes 

tfp(xo) = ups-y7ca3P(Xo) ups 

- Pv J [u(x,, x1) +~2{v20(x ,  x1)L = ,,I [Wl) - m 0 ) l  dx, 
r ,  < 2a 

r ,  > Za 

+ J w(x0, x1) P(x1lxo) dx1. 
rl > za 

I n  this equation, w can be replaced by its definition 

(5.12) 

w@o, x,) = vp(xo, x1)- ups- w o ,  x,) -b2{V20(x, x,)>, = X,' (5.13) 

For freely rotating spheres up(xo,xl), the velocity of the particle centred at xo 
interacting with the particle centred a t  x,, can be written in terms of the mobility 
coefficients A,,, A,,, B,, and B,, defined by Batchelor ('976): 

up(xo, x,) = [(A,, + 4 2 )  q + (B,, + B12) (I- =)I. ups. 
rl r? 

(5.14) 

InBatchelor (1972),A,,+A,2wasdenotedbyh1andB,1+B,z byh,.After (4.1), (4.19) 
and (4.20): 

Thus the expression (5.13) for w becomes 

where 

A = 

(5.16) 

(5.17) 

(5.18) 
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Since A,,, A12, B,, and B,, are functions of 

s = r l / a  (5.19) 

only (Batchelor 1976), 2’ and A are functions of s only. 
Equation (5.12) is the main result of this paper. The average velocity of sedimen- 

tation of a particle centred a t  x, is expressed in terms of the probability density a t  
x, (i.e. the number of particles per unit volume a t  x,) and of the conditional 
probability densities around x,. The term -?$a3P(x,) ups and the first two integrals 
represent the contribution from the backflow induced by the sedimentation of the 
other particles: the downward flow of particles is balanced by a fluid flow upwards 
which has a retarding effect on the sedimentation of the test particle. Compared with 
the result for a homogeneous suspension, there is a new term due to the inhomogeneity 
of the backflow, which takes the form of the principal value of an integral. Note, 
however, that  the inhomogeneity may also affect indirectly the other integrals 
through the probabilities. The last integral in (5.12) represents the influence of 
higher-order ( l / r 4  and above) interactions between pairs of spheres. 

I n  the result (5.12) everything is known except the probability densities. Obvious13 
the ordinary probability density P(x , )  and conditional probability density P(xJx , )  
should satisfy some conservation equations and will probably be functions of the 
interactions between particles. But we leave this question for future study. 

6. Examples of inhomogeneities. Numerical results 
I n  this section we assume that the probability density distribution P(x , )  (or 

alternatively the concentration) varies along the vertical coordinate according to 
some specified function. We will choose first a sinusoidal variation, and then a step 
function as examples, and will calculate numerically the contributions of these 
inhomogeneities to the average velocity of sedimentation. 

For the conditional probability density distribution we assume the following 
variation 

i.e. it is identical with the unconditional probability density distribution, except for 
the fact that two spheres do not overlap. For the case of a homogeneous dispersion 
(for constant P ( x l ) )  Batchelor (1972) assumes the same variation (6 .1)  on the physical 
basis of the influence of a Brownian motion. Here this physical basis does not hold 
as we did not take the Brownian motion into account in the calculation of the average 
velocity of sedimentation, and this effect would be important for an inhomogeneous 
suspension. I n  general, the probabilities P(x,lx,) and P(x l )  for rl > 2a would 
probably differ owing to  the interactions between the spheres and to Brownian motion 
in the inhomogeneous suspension. We leave these points for future study. Nevertheless 
we will assume (6 .1)  in order to get numerical estimates of the integrals appearing 
in (5.12). 

For the case of a homogeneous dispersion, the second term on the right-hand side 
of (5.12) becomes 

where the volume concentration 

- 5vps c ,  

c = 3ca3P(xo). (6.2) 



162 F. Feuillebois 

The first two integrals on the right-hand side of (5.12) vanish, and the third integral 
was calculated by Batchelor (1972) as 

- 1 .55vp, c. 

Thus, for an inhomogeneous suspension, using the assumption (6.1), (5.12) can be 
rewritten as 

@,(X,) = ups( 1 - 6.554 

4s4 2s6 288 2810 

A - ---+---+o(s-ll), 3 1 75 15 
2s 83 487 2s9 12 - 

17 5 B 
16s6 4ss 16slo 11 - 

with c defined as in (6.2). Compared with Batchelor (1972), the present formula for 
the average velocity of sedimentation contains two integrals due to the inhomogeneity 
of the suspension, which we have now to calculate. Using the expression (5.16) for 
w ,  (5.15), and the symmetry around the vertical axis, we integrate the triple integrals 
in (6.3) once: 

) 

x [P(z,) - P(z,)] dzl ds 

+ 2 n u 2 v p , ~  r + a s [ 2 ( s ) + ( G ) B A ( ~ 9 ) ]  [P(zl)-P(z,)]~dz,ds, (6.4) 
8 - 2  2,-as 

where zl, zo are the vertical components of x,, x, respectively, and s is defined as in 
(5.19). The functions 2 and A are given by (5.17) and (5.18). In  these expressions 
appear the mobility coefficients for the problem of two spheres. 

The problem of two spheres in sedimentation was solved by Adler (1981) and Jeffrey 
& Onishi (1984). The results of Jeffrey & Onishi provide the mobility coefficients in 
terms of series in l/s, which will be used in the present calculations. Dr D. Jeffrey 
kindly provided his numerical results in advance of their publication, and his 
computer programs. We used expansions of the mobility coefficients up to order 
Let us quote only the first terms of these expansions: 

3 1  
B - -+-+O(S-"). 

l2 - 4s 293 J 
The advantage of using expansions in l / s  is that, for given P,  the integrals in (6.4) 

can be integrated analytically, and the result is obtained as series, as we shall see. 
The REDUCE language for algebraic manipulations created by Hearn (1973) and its 
integration module designed by Norman (Cambridge University) was used as a help 
in the lengthy but straightforward integrations. 

Two cases are considered for the probability distribution. 



Sedimentation in a dispersion with vertical inhomogeneities 163 

Case 1 

The probability distribution is chosen as 

2rGz 
h 

P(z) = n* +n*A cos- , 

where n*, A and A are constants. n* is the average number density of particles in 
space, and the non-dimensional amplitude A is chosen to be A < 1 so that P(z) is 
non-negative. 

The result for the average velocity of sedimentation is 

Up( z0) = ups( 1 + SC - Gc*), (6.7) 

where c ,  defined as in (6.2), is the local volume concentration a t  zo, 

c* = $7ca3n* (6.8) 

S = -6.55+G1+G2, (6.9) 

is the average volume concentration in space, and 

C = Gl+G, (6.10) 

are sedimentation coefficients. The inhomogeneous coefficient G contains two terms. 
The coefficient G, comes from the first integral in (6.4). Note that the principal-value 
symbol may be dropped there, since P(z) is continuous. The coefficient G, represents 
the inhomogeneous part of the contribution from the backflow. The coefficient G,, 
which comes from the second integral in (6.4), represents the inhomogeneous part of 
the contribution from the higher-order interactions. Both G, and G, are functions of 
h/a  only. 

The result for GI is 
G, = 5 + ~ A 2 c o s 4 A - 1 - ~ A 3 s i n 4 A - 1 ,  (6.11) 

(6.12) 
h 
ax ' 

with 
A = -  

Using the expansions of the mobility coefficients to order s-l0, as given in (6.5), the 
result for G, is 

G, = - - ~ ~ o s 4 A - ~ + ~ A ~ s i n 4 A - '  

- 

- 9 A-l si 4A-l- 

A2 cos4A-l - - A  sin 411-1 

A-l sin 4 A - l - M  A-2 cos 4A-l 

- 53 11-3 si 44PLE3 A -3 sin 411 -1 -?A - 4  ci 411 --I 16 3225600 

+ ~ A - 4 c o s 4 A - 1 + ~ A - 5 s i 4 A - 1 + ~ A - 5 s i n 4 A - 1  

- 8 ci 411-1 + #& A-6 cos 4A-l+ - A-' si 4A-I. (6.13) 

In (6.13) appear the special functions 'integral sine' si, and 'integral cosine' ci, 
defined as sin t 

si (2) = - t d t ,  
(6.14) 
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For large wavelengths, i.e. h / a  large, i t  can be checked that the large terms in (6.1 1) 
and (6.13) cancel out, by expanding the trigonomet’ric and special functions (6.14) 
in Taylor series : 

4 

G, = SE)”+O(:) , I 
+- - x-- - In-+O 

G 45ax2 138071(an)2 53(arr), 75(an), 4an 
16 h 9600 A 32 h 4 h  h 

The higher-order terms have been omitted here for simplification. For infinite h / a  
the suspension becomes homogeneous, and the inhomogeneous sedimentation 
coefficients G,, G, vanish as required. 

For small wavelengths, i.e. A < 0.1, more terms are required for the expan- 
sions of the mobility coefficients, in order to improve the precision on G,. The 
expansions of the mobility coefficients up to O(S-~~O) are used. I n  the term-by-term 
integration of the series appearing in (6.4) we use the following approximation 
formulae valid for large x: 

S2n+l(x) = x2n+1 - dx s: x2n+1 sinx 

C2n+l (Z)  = x2n+1 j: ~ x2n+1 cosx dx 

sinx . 1 O0 (-l)k+1(2k+l)! O0 ( -  1)”+1(2k)! 
~ 0 s ~ -  

x2(k-n)+l x:2(k-n) 
k - n  

- - 

(6 .16~)  

(6.16 b) 

(6 .16~)  

(6.16d) 

These formulae were derived using classical approximation formulae for si(x) ci(z), 
and integrating by parts. The expression of G, for small wavelengths is 

where 

G, = ? { U * S , ( ~ ) + ~ . ’ ~ C ~ ( ~ ) + ~ ~ } .  
1-3 

(6.17) 

(6.18) 
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FIGURE 1. Case of a sinusoidal concentration wave (6.6). The inhomogeneous sedimentation 
coefficients G, and Gg, and the sedimentation coefficient S entering the expressions (6.7), (6.9) and 
(6.10) for the average velocity of sedimentation, versus the ratio of the concentration wavelength 
to the sphere radius. 

and l j  and mj are coefficients of s-j in the expansions of 9 ( s )  and &(s). They are 
obtained from (5.17) and (5.18) and from the expansions of the mobility coefficients 
in i / s  provided by Jeffrey & Onishi (1984). 

The inhomogeneous sedimentation coefficients G,, G,, and the sedimentation 
coefficient S (6.9) are plotted against A/a in figure 1 .  It may be observed that the 
change in S due to the sinusoidal inhomogeneity can be important even for long 
wavelengths. For small wavelengths, G, and G, oscillate towards the limit values 5 
and 1.55 respectively, S oscillates towards zero. The limit sedimentation velocity for 

(6.19) very small wavelengths is 

This behaviour is foreseeable, since a sinusoidal concentration profile of very small 
wavelength looks like a homogeneous field of concentration c*, the average 
concentration in space. 

Let us now consider the variation of aP with zo (after (6.2), (6.6)-(6.8)). At zo = +A, 
where c = c*, the average velocity of sedimentation is expressed by (6.19). The 
inhomogeneity of the suspension exercises no influence a t  this point. More generally, 
for a probability distribution P(z) that is antisymmetric about the plane z = zo i t  can 
be remarked that the inhomogeneous contribution to the average velocity of 
sedimentation cancels out. This is because the fluid velocity a t  x1 due to a sphere 
centred a t  xo is symmetric about the plane z = zo, and the mobility coefficients for 
two spheres centred a t  x, and x1 respectively are symmetric when x, - xo is changed 
to  -(x,-x,). Then the integrals in (6.4) cancel out. 

The influence of the inhomogeneous sedimentation coefficients G, and G, reaches 
a maximum a t  the crest and trough of the concentration wave. The difference 
between the average velocities of sedimentation at these two points, which is the rate 

Up = tcps(i -6 .55~*) .  

of overturning, is UP(O) - UP(iA) = 2Ac*up, S.  (6.20) 

For vanishingly small wavelengths, S vanishes, and overturning does not take 
place. For very large wavelengths, S decays to -6.55, and the rate of overturning 
is a t  a maximum. 
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Note that if the expression of the average velocity of sedimentation in a 
homogeneous dispersion (Batchelor 1972) were used to calculate the rate of over- 
turning the result would be (6.20) with S = -6.55. This simplification would not then 
take into account the fact that the rate of overturning varies according to the 
wavelength. 

Case 2 

The probability distribution is chosen as 

(6.21) 

where n is a constant number of particles per unit volume, and the z-axis is pointing 
downwards. 

In  the calculation of the first integral in (6.4), the principal-value symbol can be 
dropped, except for the case zo = 0. Let us now consider this case. Using the polar 
angle 6 between x1 - x, and the vertical pointing downwards, the integral can be 
rewritten, in the case zo + 0 + , 

1 1 
- 27ca3oP, pv s' [" + - + ("-2) cos2 61 [P(as cos 6) - n s2 sin 6 d6 ds. 

s - 0  , 9 = 0  48 28' 4s 28' 

From the definition (3.9) of a principal value, integration on 6 is performed first. 

The result for the average velocity of sedimentation can be written in the form 
(In fact, for a fixed 6 > &7c, the integral on s would be divergent). 

fjp(z0) = ups(l  +SC), (6.22) 

G, and G,, coming respectively from the first and the second integral in (6.4), are 

(i)  for zo/a < 2 

where c is again defined as in (6.2) and S as in (6.9). 

now 

(6.23) 

(ii) for zo/a > 2 

'I G, = 0, 

G -  2 - 3 2 z 0  128 zo 224 zo 320 zo 2t('a)6 M--10 m-o 

4 5 a  53 (a)' 225(a)' l 2 l ( ~ ) ~  
+ - -  + x G  

The coefficients Gi0), Gi') and Gi3) are found as series: 

M-10 \ 

I GP) = &- C 2 - m [ ~ 1 1 ( ~ + 1 0 ) + ~ 1 2 ( m + 1 0 ) + 2 b 1 , ( m +  10)+2b1,(m+ lo)] 
m - o  

(6.25) 

M-10 

GP) = -a+ C 2-m[~l l (m+ 10)+~12(m+ 10)-bll(m+ 10)-bl,(m+ lo)] 
m - o  
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FIGURE 2. The result for G$" as a function of the number M of terms used 

in the series (6.27) for the mobility coefficients. 

with 
D = m6 + 50m5 + 1037m4 + 1 1420m3 + 70436m2 + 230420m+ 313600. (6.26) 

I n  (6.25) the coefficients a,,, a,,, b,, and b,, are those appearing in the series 

M M \ 

(6.27) I A,, = 1 +  c a,,(m)s-m, A,, = E a,,(m)S-m, 
m - 1  m - 1  

M M 

These series up to m = 9 were used to evaluate the first fractional terms in (6.25). 
The calculation of the sums in (6.25) required the knowledge of the coefficients 
a,,(m+lO), a,,(m+lO), ... (form = 0,1,  ..., M-10) provided by Jeffrey & Onishi 
(1984). We used the expansions (6.27) up to M = 220, and obtained 

Gi0) = 0.773, Ggl) = -0.0341, Gi3) = -0.01322. (6.28) 

The precision on these coefficients was estimated by plotting the series against 

The general coefficient in the series (6.24) was found to be 
different values of M ,  up to M = 220, as shown on figure 2 for Gi0). 

G2(m) = -{[all(m+ 10)+a1,(m+ lo)] [@4+~3+609m2+3312m+6720]  

+ [b , , (m+ 10) + b,,(m + lo)] [3m3 + 75m2 + 618m + 1680]}/D, (6.29) 

with D as in (6.26). 
The inhomogeneous sedimentation coefficients G, and G, ((6.23) and (6.24)) and the 

sedimentation coefficient S calculated from these by (6.9) are plotted on figure 3. It 
can be checked, by using the integrals in (6.4) and performing some analytical 
calculations, that G, and G, are continuous at zo/a = 2 and have continuous first 
derivatives there. 

A test sphere centred a t  zo = 0 is interacting with a semi-infinite homogeneous 
suspension. As the influences of other spheres are additive, the sedimentation 
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FIGURE 3. Case of a step profile in concentration at z = 0. The inhomogeneous sedimentation 
coefficients G, and G, and the coefficient S = -6.55+G1 +G,  entering the average velocity of 
sedimentation up = vPs (1  +Sc)  of a sphere centred at zo. 

coefficient S should be then half the one found by Batchelor (1972) for a homogeneous 
suspension. We check that 

26, = 5, \ 

I 2GL0) = 1.546 x 1.55, 

S = -6.55+G1+G2 = --. 
2 

(6.30) 

Actually, the result (6.28) for GP) provides a more precise coefficient S = -6.546 
the homogeneous suspension. 

Another interpretation of the reduced backflow at the top of the cloud is the 
following: consider the flux of particles down across the plane z = zo. It is equal to 
the velocity of particles multiplied by the total area S, of the intersections of particles 
by the plane z = zo. This area can be evaluated as 

s, = Y gP(z) P(z) dz, 
z - 2,-a 

where up(z) is the area of the intersection of a sphere centred at z with the plane z = zo, 
P(z) is (as before) the probability density for this sphere to be centred at  z,  and Y 
is the area of a horizontal cross-section of the container. 

For a plane z = zo located in the homogeneous dispersion 

S, = nY gP(z)  dz. 
IOT1-a  

For the top plane zo = 0, the number of spheres contributing to S, is divided by 
2; thus S, is divided by 2. The flux of particles downward, of the order of S, vps, is 
half that of the homogeneous dispersion. The result for the backflow follows, since 
it is by definition equal to the flux of particles downward. 
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From the variation of the sedimentation coefficient S with zo (figure 3) i t  is seen 
that the influence of the inhomogeneity becomes small a t  about 10 radii under the 
top of the cloud. The influence of a sinusoidal inhomogeneity with a large amplitude 
(figure 1 )  looks comparatively larger, as for wavelengths of about 50 radii, S still 
changes by 10 yo. Thus the contributions from distant periodic inhomogeneities 
add up. 

A consequence of the present model is that, for an inhomogeneous suspension, an 
initial step profile in concentration will begin to distort. As particles a t  the top of 
the cloud fall faster, they will subsequently catch up with the preceding particles and 
the concentration will begin to increase a t  the top. This behaviour is apparently not 
observed experimentally since a cloud of particles appears to  fall steadily with a 
sharply defined upper limit and uniform concentration. However, the results of this 
section are based on assumption (6.1) which defines a given initial structure of 
doublets. Subsequently, doublets of closed spheres, which fall faster than single 
spheres, will not be replaced by doublets coming from above, in the case of the upper 
limit of the cloud. The concentration in closed doublets will decay there. This effect 
would induce a reduction in the average velocity of sedimentation, compensating the 
reduced backflow a t  the top of the cloud. More quantitative results concerning these 
effects should be obtained on the basis of the conservation equation for the pair 
probability distribution. We leave this question for future study. 

7. Conclusions 
A method has been presented which avoids the divergent integrals appearing in 

the averaging of hydrodynamic interactions in a dilute dispersion with vertical 
inhomogeneities. I ts  principle is to separate the physical effects in 

(i) the direct influence of statistically independent spheres considered as point 
forces, for which the volume V containing the spheres is taken to be finite; 

(ii) the statistical dependence and hydrodynamic interactions between spheres, for 
which the radius of a sphere is a significant lengthscale; the volume V containing 
the spheres there goes to  infinity, but the integrals are convergent ; 

(iii) the volume effect of the independent spheres is an intermediate step for which 
both descriptions for finite and infinite V have to be used. 

Steps (i) and (iii) are made possible by a consistent mathematical development on 
averaged point singularities in Stokes flow. 

The average velocity of sedimentation of a sphere is obtained, (5.12), in terms of 
integrals involving the probability distribution for a single particle (i.e. the concen- 
tration) and the conditional probability distribution for pairs of particles. This result 
is valid under the assumptions that 

(i) a quasi-ergodic hypothesis holds; 
(ii) the probabilities can be expressed in terms of probability densities. 

Xecessary consequences of (ii) are that the particles should not adhere to anywhere 
with a non-zero probability, and that the quantity P(x,lx,) - P ( x l ) ,  representing the 
statistical dependence between both spheres of a doublet, should decay fast enough 
for (5.7) to hold. 

The present paper is limited to vertical inhomogeneities, but the calculations might 
be extended to the more general case of a completely inhomogeneous suspension. Such 
a problem would involve more general equations for the problem of statistically 
independent Stokeslets plus Stokeslet quadrupoles in a container. 

In  this paper the probability distributions have not been calculated, and in $6 some 
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forms of probability distributions have been assumed so as to evaluate the integrals 
in the result (5.12). The assumption (6.1) is used for the conditional probability 
density distribution. The initial behaviour of the suspension is considered, for given 
concentration profiles. It is found that, for a sinusoidal concentration profile, the effect 
of inhomogeneity upon the average velocity of sedimentation is comparatively larger 
than for a step function in concentration. 

According to the model, both sinusoidal and step concentration profiles begin to  
distort. For the sinusoidal profile the rate of overturning is found to be an increasing 
function of the wavelength. In the case of the step profile the particles a t  the top 
of the cloud are found to fall faster than the ones in the rest of the cloud, this effect 
being limited to a layer about 10 radii below the top. To model the subsequent 
behaviour of the cloud, for future comparison with experiments, the assumption (6.1) 
should be replaced by a detailed study of an evolution equation for the pair 
distribution function. 

The bulk of this work was completed during a visit at DAMTP, Cambridge, on leave 
from CNRS, Meudon, France. I am grateful to Professor Batchelor, Dr Friedlander, 
Dr Hinch, Dr Jeffrey and Dr Rallison, for their stimulating discussions and 
comments. I would also like to thank the British Council for financial support and 
Churchill College for their hospitality during my period of work a t  Cambridge. 
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